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SUMMARY

A semi-discrete �nite element methodology for the modelling of transient free surface �ows in the
context of Eulerian interface capturing is proposed. The focus of this study is put on the choice of an
appropriate time integration strategy for the accurate modelling of the dynamics of free surfaces and
of interfacial physics. It is composed of an adaptive time integration scheme for the Navier–Stokes
equations, and of the implicit midpoint rule for the transport equation of the Eulerian marker variable.
The adaptive scheme allows the automatic determination of a time-step size that follows the physics of
the problem under study, which facilitates the accurate modelling of sti� free surface �ows. It is shown
that the implicit midpoint rule reduces mass loss for each �uid. Various free surface �ow problems are
studied to verify and validate the proposed time integration strategy. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The numerical modelling of free surface �ows is a challenging problem. Since the position
of the interface separating the �uids is a priori unknown, speci�c algorithms must be used
to determine its position. Several strategies are described in the literature for performing
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computer simulations of multi�uid �ows [1]. In this study, we are particularly interested in
a family of methods based on a marker variable that is used to identify the region occupied
by each �uid. The zero thickness interface is traded for a transition zone of the marker.
This variable is then transported by the velocity �eld of each �uid, by solving a transport
equation of the marker on a �xed grid. This Eulerian approach, which is also known as
free surface capturing, is popular for modelling complex multi�uid �ows. Among the most
popular free surface capturing methods we can mention the volume of �uid method [2],
the level set method [3], and the pseudo-concentration method [4], to name a few. This
approach is better suited for modelling the evolution of free surfaces submitted to large
and complex deformations. Modelling multiple interface �ows is not a complicated mat-
ter, since the interface is not treated as an explicit computational entity. Free surface split-
ting and reconnection are handled implicitly. However, this strategy is known to be less
accurate if the numerical strategy is not well chosen. This is due to the uncertainty
inherent in the use of the region of transition of the marker variable to locate the free sur-
face, which makes it impossible to impose interfacial boundary conditions explicitly. Free
surface capturing methods are also known to su�er from numerical di�usion or oscilla-
tions [5]. This results in the deformation of the region of transition of the marker
variable, and therefore to mass-conservation problems and to an inaccurate modelling of
interfacial physics. It is therefore important to choose the right numerical strategy in
order to perform an accurate transport of the free surfaces, and to conserve mass for
each �uid.
Several components in a numerical methodology in�uence the accuracy of a free surface

capturing strategy. An inaccurate discretization may lead to an imbalance between the viscous
forces and the capillary forces, which will translate into numerical instabilities [6]. It is well
known that a ‘good’ mesh will provide an accurate discretization of the variables of the
problem [6]. We also observe that the elliptic solvers introduce non-physical oscillations or
di�usion when the solution of a partial di�erential equation contains a discontinuity or an
abrupt variation [7]. Finally, the choice of an appropriate time integration scheme, to discretize
the transient term of the equations, is important to help conserve mass for each �uid. To our
knowledge, we do not know of a study relating the discretization in time to mass-conservation
problems and interfacial instabilities when modelling free surface �ows using an Eulerian
approach.
Authors studying multi�uid �ows use various time integration schemes. Examples are: the

backward Euler scheme for mold �lling problems [8]; the trapezoid rule (TR) for sloshing
problems [9]; and the backward di�erentiation formula (BDF) (Gear scheme) for drops
dynamics problems [10] to name a few. But these studies do not mention the reasons for
these choices. We are proposing to discuss various strategies for the discretization of the
transient term of the partial di�erential equations involved in the modelling of free surface
�ows in an Eulerian context.
After introducing the semi-discrete �nite element methodology used for modelling free sur-

face �ows using interface capturing, we �rst look at the time discretization of the
Navier–Stokes equations, which is important for modelling sti� free surface �ow problems.
We then study the in�uence of the discretization of the transient term of the transport equa-
tion on mass conservation. We �nally propose an overall time integration strategy for studying
free surface �ows. Various free surface �ow problems are studied to verify and validate the
proposed numerical strategy.
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2. MODELLING OF THE PROBLEM

Consider the free surface �ow problem illustrated in Figure 1. The region occupied by the
�rst �uid is denoted �1. The second �uid occupies the region �2, and since the �uids are
immiscible, �1 ∩�2 = ∅. The computational domain can therefore be de�ned as �=�1 ∪�2.
The interface separating the two �uids is denoted by S. The unit normal to the interface is
denoted nS .
The �ow of each �uid is modelled using the equations expressing conservation of mass

and momentum. Therefore, the equations

∇ · u=0 (1)

and

�
@u
@t
+ �(u · ∇)u=∇ · � (2)

must be solved for �uids 1 and 2, i.e. on �1 and �2, respectively, where

�=−pI+ �

is the Cauchy stress tensor, and the density of the �uid is denoted �. The extra-stress tensor
� is related to the velocity �eld by the relation

�=2��̇(u)

where � is the viscosity of the �uid, and the rate-of-strain tensor �̇ is de�ned by

�̇(u)= 1
2 (∇u + (∇u)T)

The dependent variables of the problem will therefore be denoted u1 and u2 for the velocity
�eld of �uids 1 and 2, and the pressure of the �uids will be denoted p1 and p2.
Boundary conditions can either be of the essential type (Dirichlet boundary conditions):

ui= u@� or of the natural type (Neumann boundary conditions): �i · n= t@�, where i=1; 2 in
our case. The conditions at the interface S are [1]: the continuity of normal velocities

u1 · nS = u2 · nS = uS · nS

Ω1

Ω2 

u2

n

Figure 1. A free surface �ow problem.
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the continuity of tangential velocities

u1 · tS = u2 · tS
and the force balance at the interface

(�2 − �1) · nS = ��nS

where uS is the velocity of the interface, �¿0 is the surface tension coe�cient of �uids 1
and 2, and � is the local curvature of the interface. Finally, with no loss of generality, let nS
point in �uid 1, as illustrated in Figure 1, and the radius of curvature be positive if the centre
of curvature is in �uid 1. An appropriate initial divergence free velocity �eld and pressure
distribution for each �uid

(ui(x; t=0); pi(x; t=0))= (u0(x); p0(x))

completes the de�nition of the Navier–Stokes problem.
The proposed approach to capture free surfaces is purely Eulerian. The technique used is

known as the pseudo-concentration method [4], where a ‘colour function’ de�nes �1 and �2.
This marker variable is transported with the �uid �ow by solving a transport equation of the
pseudo-concentration F

@F
@t
+ u · ∇F =0 (3)

Since this equation is hyperbolic, boundary conditions on F must be prescribed at the in�ow
of �, i.e. �−= {x∈ @� | u · n¡0}, where n is the outward normal to �. The initial condition
on F is given by the regions occupied by each �uid:

F(x; t=0)=

{
1 if x∈�1
0 if x∈�2

The position of the interface S is identi�ed by the values of x such that F(x; t)= 1
2 .

3. GENERAL NUMERICAL METHODOLOGY

The Galerkin variational formulation is used to solve the Navier–Stokes equations (2) on all
the computational domain, using the pseudo-concentration to evaluate the physical parameters
of each �uid. As an example, we obtain the viscosity on � using the expression

�(F)=�2 + (�1 − �2)F(x; t) ∀x∈� (4)

The second-order accurate Crouzeix–Raviart element combination is used to discretize veloc-
ity and pressure. The incompressibility constraint (1) is satis�ed with the use of the iterative
penalization technique of Uzawa’s algorithm [11]. The resulting algebraic system of non-linear
equations is solved using Newton’s method. The streamline upwind=Petrov–Galerkin (SUPG)
formulation ∫

�

(
@F
@t
+ u · ∇F

)
’ d� +

∑
K

∫
K

(
@F
@t
+ u · ∇F

)
(�u · ∇’) dK =0
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is used to discretize the transport equation (3). A quadratic element is used to discretize the
pseudo-concentration. The stabilization parameter � is given by h=2‖u‖, where h is the local
mesh size.
The continuum surface force model [12] is used to include the in�uence of surface tension

in the numerical model. Surface tension is considered as a volume force de�ned in the smooth
region of transition of the Eulerian marker variable. Formally, the surface capillary force
fS = ��nS�S is written as a volume force fV = ��(F)∇F , de�ned in the region of transition
of F . The Dirac delta function �S , de�ned on the interface S, is approximated numerically
in the region of transition of F using ‖∇F‖, and the curvature � is approximated using

�=−∇ · nS ≈ −∇ ·
( ∇F

‖∇F‖
)

The capillary force fV is included in the Navier–Stokes equations (2) to yield

�
@u
@t
+ �(u · ∇)u=∇ · �+ fV (5)

4. TIME INTEGRATION SCHEMES FOR THE NAVIER–STOKES EQUATIONS

4.1. Motivation: Laplace’s problem

An accurate discretization of the velocity �eld of the �uids is important for an accurate advec-
tion of the pseudo-concentration (cf. Equation (3)). A well-known free surface �ow problem,
for which an inaccurate discretization of the transient term of the Navier–Stokes equations can
be problematic, is Laplace’s problem. The problem consists of a ‘two-dimensional’ drop of
�uid of an arbitrary shape, an ellipse for example, in another �uid at rest. The capillary force
between the two �uids induces a �ow which makes the drop reach a topology that minimizes
energy, i.e. a circle in two dimensions. The curvature of the steady-state drop and the jump
in pressure should verify Laplace’s law,

p1 − p2 = �� (6)

This problem is popular for verifying numerical surface tension models in simulation codes.
Despite its simplicity, Laplace’s problem is numerically challenging. It is well documented

in References [13–18] that if the numerical strategy is not well chosen, numerically
induced parasitic currents will appear in the vicinity of the free surface when ‖u‖ → 0 (cf.
Figure 2(a)). This leads to an inaccurate discretization of the jump in pressure at the free
surface (cf. Figure 2(b)), and eventually to a �ow that does not reach a steady-state. Several
hypotheses are brought forward in the literature in order to explain this phenomenon and to
�nd a cure.
Kothe et al. [14] convolve the marker variable F with various smooth kernels to obtain

a molli�ed colour function F̃ . This leads to a more accurate computation of the unit normal
to the free surface nS and of the curvature �, which in turn reduces parasitic currents. Other
authors have improved the numerical discretization they were using in order to obtain a more
accurate modelling of interfacial physics. This is the case of Popinet and Zaleski [15] who
use higher accuracy discretizations of the Lagrangian representation of the free surface, and
of the pressure, which leads to a reduction of parasitic currents. In a similar fashion, the
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Figure 2. Numerical instabilities in modelling Laplace’s problem: (a) parasitic
currents; and (b) pressure contours.

PROST algorithm [17] was also devised to eliminate the spurious currents problem. In this
algorithm, free surface capturing is performed with the VOF (volume of �uid) technique, using
a least square �t of a quadratic surface to the colour function for each interface cell and its
neighbours. The authors also implemented a higher-order advection scheme for the transport
equation of the colour function. Hou et al. [19] rather consider Laplace’s problem as a sti�
problem. They devised a numerical procedure based on the boundary integral formulation to
remove the sti�ness due to surface tension. The numerical results found in these references
show that parasitic currents are in fact reduced, but it is not clear if the steady-state is reached.
We have found that several aspects of these studies are important [20]. In particular, the

fact that this problem is sti� is often overlooked, and we think, like Hou et al. [19], that this is
the key to the accurate modelling of Laplace’s problem. This led us to develop a methodology
to tackle sti� free surface �ow problems through the use of a time integration strategy which
includes an adaptive scheme for the transient term of the Navier–Stokes equations. This
strategy will allow us to modify the size of the time discretization in order to maintain the
balance between the viscous forces and the capillary forces when approaching steady-state.
Our hypothesis is that such a scheme will allow us to reach the steady-state of Laplace’s
problem with no parasitic currents at the free surface.

4.2. Adaptive time integration scheme

Adaptive time integration schemes for the Navier–Stokes equations are not new in the
computational science literature (cf. Reference [21] for details). They allow the automatic
computation of an ‘optimal’ time-step size �tn at every time step, in order to adapt the time
discretization to follow the physics of the modelled problem. This strategy is a common prac-
tice for discretizing spatial variables. It is di�cult to explain why it is not more popular in
the CFD literature for the temporal variable. It is particularly absent from the free surface
�ow modelling literature.
The most popular adaptive time integration scheme is the adaptive trapezoid rule (ATR).

Even if this scheme is devised to compute the appropriate time-step size in order to avoid
the oscillations often seen with the standard TR, the ATR scheme can still exhibit wiggles
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in some cases [21]. This is why we choose to use an adaptive backward di�erentiation
formulae (ABDF), which is based on the constant-time-step size second-order accurate BDF,
also known as Gear scheme. This choice is justi�ed by the fact that the BDF scheme is
known to damp oscillatory solutions.
The �nite element discretization of velocity and pressure,

u(x)=
7∑

i=1
ui’i(x) and p(x)=

3∑
i=1

pi i(x)

where ’i(x) and  i(x) are the �nite element interpolation functions of the Crouzeix–Raviart
element and the ui and the pi are the degrees of freedom of velocity and pressure on an
element, are introduced in the elementary linearized weak forms of the conservation of mass
(1) and momentum (2) equations, to yield an algebraic system of equations of the form (see
Reference [22] for details)

[
M 0

0 0

]⎡
⎣ ˙̃U
˙̃P

⎤
⎦+

[
A BT

B 0

]⎡
⎣Ũ
P̃

⎤
⎦=

⎡
⎣ F̃
0̃

⎤
⎦

The vector Ũ contains the degrees of freedom in velocity, P̃ contains the degrees of freedom
in pressure, M is the mass matrix of the transient term, A is the viscous term matrix and
B is the discrete divergence matrix. But since we are using Uzawa’s algorithm to enforce
the incompressibility constraint, as described in Section 3, this linear system of equations
reduces to

M ˙̃U + ArŨ =Fr (7)

(cf. Reference [11] for details). We therefore perform transient error control only on the
degrees of freedom in velocity. The degrees of freedom in pressure will be updated by
Uzawa’s algorithm.
Following the development of Gresho et al. [21], we implemented an ABDF scheme for

the discretization of the Navier–Stokes equations. Based on the second-order accurate BDF,
the variable-time-step size BDF scheme can be expressed as

˙̃Un+1 =
(2 + (�tn−1=�tn))Ũn+1 − (2 + (�tn−1=�tn) + (�tn=�tn−1))Ũn + (�tn=�tn−1)Ũn−1

�tn +�tn−1
(8)

Using Taylor’s expansions

ũ(tn±1)= ũ(tn ±�tn)≈ Ũn±1 = Ũn ±�tn
˙̃Un + 1

2�t2n
	̃Un ± 1

6�t3n
:::

Ũn+O(�t4n) (9)

in (8), we �nd the local truncation error of this variable-time-step size BDF scheme to be

Ũn+1 − ũ(tn+1)=
(�tn +�tn−1)2

�tn(2�tn +�tn−1)
�t3n

:::

Ũn

6
+O(�t4) (10)

In order to be able to determine the next time-step size �tn+1, we need to express the local
truncation error of the ABDF scheme in term of Ũn+1. We �rst need some kind of ‘cheap’
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predictor scheme with a local truncation error which is also in �t3n
:::

Ũn. The variable-time-step
size explicit midpoint rule is such a candidate:

Ũ p
n+1 = Ũn +

(
1 +

�tn
�tn−1

)
�tn

˙̃Un −
(
�tn
�tn−1

)2
(Ũn − Ũn−1) (11)

with a local truncation error of

Ũ p
n+1 − ũ(tn+1)=−

(
1 +

�tn
�tn−1

)
�t3n

:::

Ũn

6
+O(�t4) (12)

which can again be obtained by using (9) in (11).
We can now express the local truncation error of the ABDF scheme in terms of only Ũn+1,

Ũ p
n+1 and �tn. Subtracting Equation (12) from Equation (10), we obtain

Ũn+1 − Ũ p
n+1 ≈

[
(�tn +�tn−1)2

�tn(2�tn +�tn−1)
+
(
1 +

�tn
�tn−1

)]
�t3n

:::

Ũn

6

which can be written as

�t3n
:::

Ũn

6
≈ (Ũn+1 − Ũ p

n+1)
/[

(�tn +�tn−1)2

�tn(2�tn +�tn−1)
+
(
1 +

�tn
�tn−1

)]

in order to rewrite expression (10) as

Ũn+1 − ũ(tn+1)≈ (�tn+�tn−1)2

�tn(2�tn+�tn−1)

{
(Ũn+1−Ũ p

n+1)
/[

(�tn+�tn−1)2

�tn(2�tn+�tn−1)
+

�tn
�tn−1

+1
]}

After simplifying this expression, we can express the local truncation error of the ABDF
scheme, which will now be denoted d̃n, as

d̃n=
(1 + (�tn−1=�tn))(Ũn+1 − Ũ p

n+1)
2 + (�tn−1=�tn) + 2(�tn=�tn−1)

(13)

The new time-step size is then obtained by �rst observing that the local truncation error
(10) of (8) gives us:

d̃n+1

d̃n

=
Ũn+2 − ũ(tn+2)
Un+1 − ũ(tn+1)

≈ �t3n+1
:::

Ũn+1

�t3n
:::

Ũn

≈
(
�tn+1
�tn

)3
(14)

Since we want to control the size of the local truncation error at the next time step, i.e.

‖d̃n+1‖¡� (15)
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where � is a user-speci�ed tolerance, we substitute Equation (14) in expression (15) to obtain

�tn+1 =�tn

(
�

‖d̃n‖

)1=3
(16)

where ‖d̃n‖ is computed using expression (13). The tolerance � must not be chosen too large,
which could lead to inaccurate results and possibly to an unstable solution similar to the one
illustrated in Figure 2, or too small, which would make the simulation too costly. From our
experience, this tolerance is application dependent and some experimentation is necessary to
�nd an appropriate value for a given problem. We also observed that if the norm used in the
computation of (16) is not well chosen, it can lead to an adaptive time integration scheme
which does not perform well. We chose a norm suggested in Reference [21]

‖d̃n‖2 = 1
Nu + Nv

[
Nu∑
j=1

( du
n+1; j

|un+1; j|+ u0

)2
+

Nv∑
j=1

( dv
n+1; j

|vn+1; j|+ v0

)2]

where u and v are the x and y components of velocity, Nu and Nv are the number of degrees
of freedom of each component in velocity, du

n+1; j and dv
n+1; j are the jth components of d̃n+1

of each component in velocity and u0 = (u0; v0) are reference velocities.
In summary, the adaptive time integration scheme consists of the following steps.

Given �, �t0, Ũ0, �t1 and Ũ1 which can initially be computed using the ‘standard’ BDF
scheme, for n=1; 2; 3; : : ::

• compute Ũ p
n+1 using (11);

• solve (7) using (8);
• compute �tn+1 using (16).

4.3. Veri�cation: the Von Karman vortex street

A well-known benchmark for the veri�cation of the numerical modelling of the transient
Navier–Stokes equations is the problem of the Von Karman vortex street behind a circular
cylinder [23]. It consists of a rectangular geometry containing a circular obstacle centred at
the origin of the system of coordinates, as illustrated in Figure 3. The boundary condition
u=(1; 0) (freestream velocity) is imposed on @�, except for the out�ow where we have a
free boundary condition. The Navier–Stokes equations are non-dimensionalized as

1
St

@u
@t
+ (u · ∇)u= 1

Re
∇ · �

where the Reynolds number Re=�0u0L0=�0 = 100. We therefore choose the reference density
to be �0 = 1, the reference velocity to be u0 = ‖(1; 0)‖2 = 1, the reference length to be L0 = 1
and the reference viscosity to be �0 = 0:01. The Strouhal number St= u0t0=L0 also appears in
the equations and is set to 1.
The paper of Engelman and Jamnia [23] includes an important quantity of qualitative data

and some quantitative results. They �rst give the time history of various quantities at several
points in the geometry. We will limit our comparison to the x and y components of velocity
at (x; y)= (4; 0), which are illustrated in Figure 4. A behaviour which is very similar to the
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Figure 3. Von Karman vortex street problem.
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Figure 4. Time history of the velocity components at (x; y)= (4; 0): (a) horizontal
velocity; and (b) vertical velocity.

results of Reference [23] can be observed in the region where the periodic regime is reached.
Figure 5 illustrates the time-step size �tn obtained from the ABDF scheme, which is larger for
the transient phase of the simulation, and it gets smaller when the periodic regime is reached.
This behaviour can be explained by the regularity of the solution. During the transient phase
of the �ow, the smoothly varying velocity �eld leads to larger time-step sizes. In the periodic
regime, the variations of the velocity �eld are captured by the transient error estimator, which
leads to irregular variations of smaller time-step sizes. The average time-step size, for the
periodic regime, is of the order of �tn ≈ 0:096, for a tolerance of �=0:0005. Engelman and
Jamnia use an ATR scheme with the same tolerance. They obtain a time-step size of the
order of �tn ≈ 0:269 in the periodic regime. This di�erence can be explained by the di�erent
schemes used and by the choice of the norm for computing ‖d̃n‖.
From a quantitative perspective, a time of reference, tref , is de�ned in Reference [23] as a

time at which the y component of velocity goes, in the periodic regime, from a negative to a
positive value at (x; y)= (4; 0). Engelman and Jamnia measured the period for one shedding
(during which two vortices are shed, one from the top and one from the bottom) to be
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Figure 5. Time-step sizes computed by the ABDF scheme for the Von Karman problem.

�=5:80. The wavelength of their simulations was �=5:32. Based on our results, we �nd the
same period and wavelength.
Finally, Figure 6 illustrates plots of various quantities at t= tref , in order to compare quali-

tatively our results with the ones of Engelman and Jamnia. We can again see that our �gures
are very similar to the ones of the benchmark paper.

4.4. Laplace’s problem revisited

Laplace’s problem will now be studied using the ABDF time integration scheme for the
Navier–Stokes equations. The discretization of the transient term of the transport equation (3),
which is not a problem in this case, will be discussed in the next section.
Let us consider a ‘2-D’ drop of �uid of area 4	 in a geometry with dimensions [−3; 3]×

[−3; 3]. As an example, the initial drop can have the shape of an ellipse described by
y=±B

√
1− (x2=L2), such that LB=4, where L and B are the longest and shortest semi-

axes of the ellipse. The �uids are initially at rest, with same density and viscosity. Let us
suppose that the surface tension coe�cient between the �uids is �=2. If L 	=B, the capillary
force will generate a �ow which will deform the drop until it reaches the shape of a circle of
radius 2 in this case. According to Laplace’s law (6), we should observe a jump in pressure
of p1 − p2 = 1.
Using the methodology described in Section 3 with the ABDF scheme, and with a structured

mesh containing 140× 140 elements, the numerical modelling of Laplace’s problem gives us
the time-step sizes illustrated in Figure 7. We observe a behaviour similar to the one illustrated
in Figure 5 for the Von Karman problem, i.e. larger time-step sizes during the transient phase
of the simulation, and smaller time-step sizes when the drop is reaching its steady-state shape.
We, however, do not have the apparent ‘noise’ observed before, but we still observe small
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Figure 6. Plots at t= tref for the Von Karman vortex street problem: (a) horizontal velocity component;
(b) vertical velocity component; and (c) pressure.

variations of �tn. This can be explained by the fact that when the drop reaches its steady-
state shape, we still observe very small deformations of the free surface that are captured by
the transient error estimator. Figure 8 illustrates the time evolution of the jump in pressure.
The fact that (p1 − p2)→ 1 is an indication that the steady-state is reached. Streamlines are
also useful to determine if the steady-state of a free surface �ow is reached. It can be seen
in Figure 9(a) that the streamlines do not cross the free surface, which is another good
indication that the numerical strategy allows us to reach the steady-state of this problem, with
no parasitic currents. Another indication that the surface tension-driven �ow simulation is
performed accurately is the smooth transition of pressure, with no irregularities, as illustrated
in Figure 9(b).
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Figure 7. Time-step sizes computed by the ABDF scheme for Laplace’s problem.
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Figure 8. Time evolution of the jump in pressure for Laplace’s problem.
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(a) (b)

Figure 9. Steady-state of Laplace’s problem: (a) streamlines; and (b) pressure contours.

5. TIME INTEGRATION SCHEMES FOR THE TRANSPORT EQUATION

5.1. Motivation: the drop advection problem

The choice of an appropriate time integration scheme for the transport equation (3) is impor-
tant in our numerical methodology, since it directly in�uences mass conservation. This can be
illustrated with the drop advection problem (cf. Figure 10). A ‘2-D drop’, initially at rest, lies
in another �uid which is submitted to the �ow described by u(x; t)= (1; 0). It is well known
that the advection of the marker variable, which represents the initial shape of the drop, will
loose its initial shape, since it is subject to numerical oscillations or di�usion. This is caused,
among other reasons, by the time integration scheme used to discretize the transient term of
the transport equation (3).

5.2. Numerical comparison

Let us consider three popular implicit, second-order accurate, A-stable time integration
schemes applied to the transport equation (3): the TR, also known as the Crank–Nicholson
scheme:

Fn+1 − Fn

�t
+
1
2
(un · ∇Fn + un+1 · ∇Fn+1)=0

the BDF, also known as Gear scheme

3Fn+1 − 4Fn + Fn−1

2�t
+ un+1 · ∇Fn+1 =0

and the implicit midpoint rule (IMR)

Fn+(1=2) − Fn

(�t=2)
+ un+(1=2) · ∇Fn+(1=2) = 0; and Fn+1 =2Fn+(1=2) − Fn

We could also mention the �rst-order accurate backward Euler scheme:

Fn+1 − Fn

�t
+ un+1 · ∇Fn+1 =0
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Figure 10. Drop advection problem.
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Figure 11. Mass loss induced by time integration schemes.

which is still popular in the computational science literature. It will not be included in our
study. The comparison that will be performed consists in measuring the mass (the area in
2-D) of the drop for a given number of time steps. The numerical procedure for computing
the mass of the drop is explained in the Appendix.
Figure 11 illustrates the performance of the TR, BDF and IMR schemes with respect to

mass conservation. It may seem surprising that TR, which is one of the most popular time
integration scheme used in CFD codes, performs poorly in our test. On the other hand, the
IMR scheme which is not seen in many CFD papers, gives impressive results with respect to
mass conservation. Quantitatively, we can observe, after only 400 non-dimensional time steps,
for a �xed time-step size of �t=0:01 and for a mesh grid size �x of the order of 0.07, a
mass loss of the order of 0.36% for TR while we have a mass loss of 0.001% for IMR.
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This can be explained by the various properties of the IMR scheme [21]. This scheme is
second-order accurate, it introduces nearly no arti�cial numerical oscillations, and it is A-
stable, yet it introduces little undesirable damping compared to other A-stable schemes, which
makes this scheme interesting for an advection equation. Constant-time-step size schemes are
known to give accurate results for a transport equation. Adaptive time integration schemes
are suitable when the di�usion term is non-negligible.

6. OVERALL TIME INTEGRATION STRATEGY

6.1. The time integration strategy

Based on the results of the previous sections, the overall time integration strategy we propose
for modelling free surface �ows using an Eulerian free surface capturing approach is composed
of the ABDF scheme for the Navier–Stokes equations coupled with the IMR scheme for the
transport equation. Since we solve the system of partial di�erential equations (2) and (3) in
a coupled manner, the time steps used with the IMR scheme are the ones computed by the
ABDF scheme.
This strategy allows us to combine the previously described properties of both schemes,

and to avoid their drawbacks. The BDF scheme for the transport equation is too di�usive,
which would lead to the deformation of the pseudo-concentration and to mass loss. Moreover,
an adaptive time integration scheme is not useful for an hyperbolic equation. In practice, we
observe that the time-step size reaches a constant value which corresponds to the chosen
tolerance, and it does not vary thereafter. The IMR scheme for the Navier–Stokes equations
could lead to numerical oscillations in the discretization of the velocity components.
The proposed methodology is used to solve free surface �ow problems of various nature in

the following subsections. First, we will model Taylor’s problem using the proposed method-
ology. This problem is known to reach a steady-state for speci�c operating conditions. The
ABDF scheme should smoothly handle this problem. We will then study transient bubble
interaction problems, which should be modelled accurately, with little mass loss, with the
help of the IMR scheme.

6.2. Numerical validation: Taylor’s problem

Let us consider an initially undeformed ‘2-D circular drop’ of radius a=1, located at the
centre of a computational domain of dimensions [−5; 5]× [−5; 5]. The mesh grid size for this
simulation is �x=0:2. We are interested in the steady-state shape reached by the drop when
submitted to a Cartesian linear �ow. The far �eld �ow is described by

u(x)=
1
2

̇

(
1 + � 1− �

−1 + � −1− �

)(
x

y

)
(17)

where 
̇ is the shear rate of the �ow and � is a �ow-type parameter. For example, the case
�=1 corresponds to an extensional �ow, while �=0 expresses a pure shear �ow. The �ows
described by Equation (17) are generated using the four-roll mill, developed by Taylor [24].
The apparatus consists of four rotating cylinders, in the middle of which a drop is placed. By
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Figure 12. Steady-state shape of the drop and streamlines for Taylor’s problem.

controlling the rotation rate of each cylinder, it is possible to obtain, far from the drop, the
linear velocity �eld described by Equation (17).
As an example, let us consider the case �=0:2 with a viscosity ratio of �=�1=�2 = 27:3

(the drop is more viscous) and a density ratio of �=�1=�2 = 1. For a capillary number of

Ca=
�2
̇a
�
=0:082

where the Navier–Stokes equations with the CSF model (5) are non-dimensionalized as

Re
St

�̃
@ũ
@t̃
+ Re�̃(ũ · ∇̃)ũ= ∇̃ · �̃+ 1

Ca
�̃∇̃F

it is observed experimentally [25] that the drop reaches a steady-state shape. Quantities
denoted with a tilde (‘˜’) represent non-dimensional values. The Reynolds number, Re, is
small in this application, which leads us to neglect the acceleration term. The ratio Re=St,
which includes the Strouhal number St, is set to 1. Figure 12 illustrates the shape of the
drop and the streamlines, indicating that the steady-state seems to be reached. Figure 13 illus-
trates the time-step sizes computed by the ABDF scheme, for a tolerance of �=0:0005. We
again observe larger time-step sizes for the transient phase of the simulation. The time-step
sizes become smaller when the drop reaches its steady-state shape and angle, where small
deformations of the free surface are again captured by the transient error estimator.
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Figure 13. Time-step sizes for Taylor’s problem, using the ABDF scheme (Ca=0:082).

Table I. Comparison of experimental and numerical
results for Taylor’s problem: �=0:2, �=27:3.

Exper. Numer.

Ca D � D �

0.082 0.0635 −28.0 0.1042 −28.0
0.164 0.0786 −34.0 0.1391 −34.0
0.246 0.0788 −35.0 0.1438 −35.0
0.329 0.0798 −35.0 0.1470 −35.0

Taylor [24] de�ned a deformation parameter D as

D=
L − B
L+ B

where L and B are the longest and shortest semi-axes of the drop cross-section, in or-
der to measure the deformation of a drop. For various values of Ca, we computed the
deformation parameter D and the rotation angle � of the drop. The results are compared
to the experimental data of Bentley and Leal [25] in Table I. It can be seen that the defor-
mation parameter is nearly constant, this being the consequence of the rotational �ow. The
concave deformation curve, illustrated in Figure 14, is typical of this situation. Our over-
estimation of the deformation parameter is probably caused by the fact that we perform a
2-D simulation of a 3-D problem. However, the computed angle of rotation reached by the
numerical drops is accurate.
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Figure 14. Deformation curve for Taylor’s problem: �=0:2, �=27:3.

6.3. Numerical validation: buoyancy-driven rising bubbles

The velocity and deformation of a single rising bubble due to buoyancy will �rst be studied.
This test is based on the results of Sussman and Smereka [26]. Let us consider a bub-
ble of non-dimensional radius ã=1, which is initially lying at rest in another �uid, in a
geometry of dimensions [−3; 3]× [0; 12]. This system is submitted to a constant body force
g=(0;−g), where g is the gravitational acceleration. Since the �uids have a density ratio
of �=�1=�2 = 0:0011 (the �uid of the bubble is lighter), buoyancy generates a �ow which
makes the bubble rise. The viscosity ratio for this test is given by �=�1=�2 = 0:0085.
For this problem, the Navier–Stokes equations with the CSF model (5) are

non-dimensionalized as

1
St

�̃
@ũ
@t̃
+ �̃(ũ · ∇̃)ũ= 1

Re
∇̃ · �̃+ 1

Fr
�̃g̃ +

1
We

�̃∇̃F (18)

where, in our case, the Reynolds number is given by

Re=
au0�2
�2

= 9:8

the Froude number is de�ned as

Fr=
u20
ag
=0:76
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(a) t = 0.0 t = 3.6 t = 4.8 t = 6.0(b) (c) (d)

Figure 15. Buoyancy-driven rising of a single bubble.

and the Weber number is given by

We=
a2g�2

�
=7:6

where the reference velocity u0 is the experimentally observed [27] steady-state rise velocity
of an air bubble, which is u0 = 21:5 cm=s. The Strouhal number St is again set to 1. The other
quantities were previously described.
Figure 15 illustrates the deformation of the rising bubble at various time steps. The simula-

tion was performed for the complete bubble. Our methodology performs well in maintaining
the symmetry of the bubble, and its vertical path. Since this simulation is performed using
a Cartesian frame of reference, the computed shapes of the bubble di�er slightly from the
ones illustrated in Reference [26]. The computed rising speed of the bubble is underestimated
when compared to the non-dimensional rising speed which should be equal to 1, this be-
ing caused again by our 2-D approximation of an axisymmetric phenomena. Finally, using
our methodology, we measure a numerical mass loss of the order of 8% over 80 time steps
(t=0; : : : ; 6:5).
We will now study the rise and interaction of two bubbles due to buoyancy. It is a common

practice in the literature to describe bubbles dynamics problems using the E�otv�os number,
also known as the Bond number

Eo=
�2gL20

�

and the Archimedes number, also known as the Galileo number

N =
�22gL

3
0

�22
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Figure 16. Bubbles rising problem.

(a) t = 0.00 (b) t = 2.39 (c) t = 2.99 (c) t = 3.43

Figure 17. Buoyancy-driven rising and coalescence of two bubbles.

The Morton number is also seen in the literature:

M =
g�42
�2�3

=
Eo3

N 2

However, it is possible to still work with the non-dimensionalized equations (18) by de�ning
the reference velocity as u0 =

√
gL0, which gives us a relation between the non-dimensional

groups (Re; Fr;We) and (N; Eo). In our case, Re=
√
N , Fr=1 and We=Eo.

Our test problem, described in Reference [28], is illustrated in Figure 16. It consists of two
vertically aligned bubbles with same diameter d=2:6mm, located at a distance of h=0:4mm
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Figure 18. Rising and coalescence of two bubbles: mass conservation.

from each other. The non-dimensional groups are given by Re=
√
N =30 and Eo=We=100.

Finally, the density ratio is given by �=�2=�1 = 2 and the viscosity ratio is �=�2=�1 = 2.
Figure 17 illustrates the deformation and coalescence of the two rising bubbles at various

time steps. The shape of the drops are similar to what we can observe in Reference [28], the
di�erence coming from the fact that these results come from 3-D simulations. We observe
that coalescence occurs after 29 time steps (t̃=3:43). Figure 18 illustrates the variation of the
total mass of the bubbles (non-dimensional area) for the duration of the simulation, which is
very small. It is unfortunately di�cult to �nd quantitative results in the literature in order to
perform an accurate validation for this problem.

7. CONCLUSION

A time integration strategy is proposed for modelling free surface �ows in the context of
Eulerian interface capturing. An adaptive second-order accurate backward di�erentiation for-
mula is used to discretize the transient term of the Navier–Stokes equations, and the implicit
midpoint rule is used for the transport equation of the marker variable. The adaptive scheme
allows the automatic determination of a time-step size that follows the physics of the problem
under study. It is shown that this mixed strategy gives accurate results for steady-state free
surface �ows, and that it reduces mass loss for transient multi�uid �ows. Such a study is
novel to our knowledge. It also seems that it is the �rst time that the ABDF scheme was
used in an applied context.
In order to keep the focus of this study on time integration strategies, several components

of the numerical model necessary for performing accurate free surface �ow simulations were

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1123–1147



A STUDY OF TIME INTEGRATION SCHEMES FOR MODELLING FREE SURFACE FLOWS 1145

not discussed in this paper. Maintaining the region of transition of the pseudo-concentration
sharp but smooth is very important in order to perform the accurate modelling of surface
tension. Mesh adaptation in the vicinity of the free surface is also important for accurately
modelling interfacial physics. The accurate numerical modelling of the capillary force is also
a delicate matter. These questions were studied in References [5, 6, 16, 20] and we are still
making progress developing more accurate algorithms for addressing these questions. Future
work also includes the development of an axisymmetric model which should allow us to
obtain numerical results that are closer to what is observed experimentally. We also plan to
study applied (industrial) free surface �ows involving the dynamics of drops and bubbles such
as emulsions and jet break-ups.

APPENDIX A: COMPUTING THE AMOUNT OF MASS FOR EACH FLUID

Verifying mass conservation for each �uid is not a straightforward process in the context
of Eulerian free surface capturing. The fact that we are working with non-structured meshes
makes it more di�cult to �nd an algorithm for computing the area of the regions �1 and �2.
When the interface does not go through an element, i.e. there are no points x in the element

such that F(x)=1
2 , the area of the triangle gives the quantity of mass of �uid 1 or 2 in that

element. The other possibility is to see the interface S go through an element, as illustrated in
Figure A1. A �rst approximation will be obtained by locating the two points of intersection
of the free surface with the sides of the element (the points 2 and 5 in Figure A2(a)). The
quantity of �uid 1 is approximated by the area of the triangle with vertices 1; 2 and 5, and
the quantity of �uid 2 by the area of the quadrangle with vertices 2; 3; 4 and 5. We can
then repeat this process by subdividing the element, as illustrated in Figure A2(b), and by
computing the area occupied by each �uid in the subtriangles, as described above. We then
repeat this subdivision process (cf. Figure A2(c)) until convergence of the computed area of
the regions occupied by each �uid in that element, for a given tolerance. We observe that we
compute the mass for each �uid to machine precision after 3 or 4 levels of subdivisions.

Figure A1. Elementary free surface �ow problem.
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(a) (b) (c)

Figure A2. Mass computation for each �uid: (a) �rst level; (b) second level; and (c) third level.
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